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We calculate the free energy density for inhomogeneous electrolytes based on the mean-field Debye-Hückel
theory. Derived are the contributions of �1� the differential term for the electrolyte density being slow varying
in one direction and �2� the boundary term for an electrolyte confined to one side of a planar interface. These
contributions are shown to cause an electrolyte depletion near the air-water interfaces, which makes the surface
tension increase, to be significantly larger than those predicted by previous theories. Nonuniform electrolyte
densities are also computed near the water-electrolyte and electrolyte-electrolyte interfaces. Finally we calcu-
late the interaction of two uncharged macrospheres due to the electrolyte depletion.
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I. INTRODUCTION

The thermodynamics of charged particle fluids �electro-
lytes� is a long-standing problem. Eighty years ago a mean-
field theory of electrolytes was published by Debye and
Hückel �1�. The complicated interionic interactions are re-
placed by the mean potential obtained by solving the linear-
ized Poisson-Boltzmann �PB� equation in the Debye-Hückel
�DH� theory. In homogeneous systems the theory provides
good predictions for dilute solutions �2�. In the next year,
Wagner applied the theory to explain the increase of surface
tension of an air-water interface when salts are added in the
water �3�. In 1926 Bjerrum extended the theory to larger
densities by associating positive and negative ions to form
neutral dipole pairs �4�. Subsequently other formulations—
for example, the integral equations �5�—are proposed to go
beyond the mean-field level. Computational methods such as
the Monte Carlo �MC� simulations �6� of charged particle
systems were also actively studied in the last several
decades.

The DH theory is also extended to other Coulomb sys-
tems. For example, the Debye-Hückel hole theory �7� ex-
tends the DH theory to one-component plasma by including
an effective spherical cavity around an ion, inside which no
other ions can penetrate. The generalized Debye-Hückel
theory �8� obtained density correlations in the one-
component plasma by functional differentiation of the DH
theory generalized to nonuniform densities.

Integral equation formulations �5� are proposed to com-
pute the correlation and fluctuation corrections neglected in
the mean-field theory. However, in these theories the free
energy cannot be defined explicitly, so it is hard to specify
each source of correlations. On the other hand, density func-
tional theories �9� treat correlation corrections by expressing
the free energy as a functional of density distribution. The
equilibrium in principle can be obtained by a variational
method. However, the explicit form of the free energy den-
sity is largely unknown and approximations need to be made
�10�. For example, inspired by the DH approach to the one-
component plasma, one contribution from counterion corre-
lations to the local density functional is proposed �11�.

In this paper we propose that for nonuniform electrolyte
distributions the local free energy density can be obtained in
the mean-field level. We consider explicitly the simple case

when the electrolyte density varies in one spatial direction,
which commonly arises near a planar interface. In electro-
lytes with an air-water interface, Wagner �3� as well as
Onsager and Samaras �12� added an image force to the mean
force, obtained from the uniform distribution, to get a non-
uniform distribution. In Sec. II, besides the image force, we
show how a slow-varying nonuniform density leads to a
modified linear PB equation based on the DH theory and
contributes a differential correction term to the free energy
density. We also derive another term contributed from the
presence of an interface. The nonuniform and interface con-
tributions are found to be more significant than the image
force and give a depletion zone of ions near the interface
significantly larger than previous theories. Considering finite
ionic size leads to consistent values of the surface tension
with experimental values at low concentrations.

In Sec. III we apply the formulation to two situations
where electrolyte depletion is expected even when there is no
dielectric discontinuity. In the first part the equilibrium den-
sity profile is calculated numerically when salts are confined
to one side of an interface in water. The combined effects of
the boundary and differential terms yield a depletion of ions
from the interface, within the range of the Debye length. The
interfacial density could be significantly lower than the bulk
value, especially for ions with higher valences. In the second
part the density profiles of two electrolytes separated by an
interface are calculated for the application on the problem of
ions transfer. The ratio of the interfacial to bulk density dif-
ferences is found to decrease as the average bulk density is
increased. At the end of Sec. III we apply the result to esti-
mate the attraction induced by nonuniform electrolyte densi-
ties around two uncharged macrospheres. The effective
depletion zone of ions contributes a weak attraction with
larger ranges at lower electrolyte concentrations. At high
concentrations the interaction is not expected to be signifi-
cant because other energy scales, such as the van der Waal
and dispersion forces, become important at short ranges.

II. SURFACE TENSION OF AN AIR-ELECTROLYTE
INTERFACE

A. Introduction

An aqueous solution of inorganic salts was known to have
a higher surface tension than pure water �13�. Wagner sug-
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gested that the salt depletion near the surface is mainly
caused by the electrostatic repulsion between the ions and
polarized interface, making the surface tension increase �3�.
To calculate such effects, consider a semi-infinite electrolyte
with an air-water interface located at z=0. The density pro-
file ns of the s-type ions at a distance z from the interface is
directly given by the Boltzmann formula

ns�z� = nse
−�Ws�z�, �1�

where �=1/kBT, kB the Boltzmann constant, T the tempera-
ture, and Ws�z� the potential of mean force. For an 1:1 elec-
trolyte, W+=W−�W and n+=n−�n. W�z0� can be calculated
as the work to bring an ion from infinity to z0. The repulsive
force felt by this ion, due to the dielectric discontinuity pro-
duced by the interface, was replaced by the interaction be-
tween the ion and its image q� at −z0. For an aqueous solu-
tion at room temperature the dielectric constant ratio
between water and air is about 80:1; thus, Wagner proposed
that q�= ��−���q / ��+����q. In an electrolyte, the electro-
static potential �, with the presence of the fixed ion, satisfies
the equation

�2��r,z0� − �2��r,z0� = −
q

�
��r,z0� , �2�

with �2�z0��2�n�z0�q2 /�. Here the potential of mean force
was approximated by the mean electrostatic potential �q��
and the second term on the left is obtained by the lineariza-
tion �assuming low electrolyte densities� of the Boltzmann
factor �2�. Onsager and Samaras �OS� replaced ��z0� with the
bulk value ���� to simplify the calculation �12�. The electro-
static potential then becomes

� =
q

4��
� e−��r−z0ẑ�

�r − z0ẑ�
+

e−��r+z0ẑ�

�r + z0ẑ�
	 , �3�

where the first term is the well-known solution of Eq. �2� and
the second term is the contribution from the image charges.
W�z� is calculated by integrating the repulsive force felt by
the ion from infinity to z �12� as

W�z� =
q2

4��

e−2�z

4z
.

The number density profile was obtained by substituting this
expression into Eq. �1� as

n�z� = n0 exp� lBe−2�z

4z
	 . �4�

Here n0 is the density away from the interface and
lB=�q2 /4��
0.7 nm at 300 K is the Bjerrum length. The
negative adsorption would increase the surface tension ac-
cording to the Gibbs-Duhem equation �14�. The OS theory
gives fairly good agreement with experiments for concentra-
tions up to 0.1M, but underestimates the surface tension at
higher concentrations.

Recently Levin �15� calculated the free energy needed to
create the interface to obtain the surface tension rather than
using the Gibbs adsorption isotherm. From Eq. �3�, the elec-
trostatic potential � felt by the ion, due to the other ions and

the polarized interface, was first calculated as

� = lim
r→z0ẑ

�� −
q

4���r − z0ẑ�� =
q

4��
�− � +

e−2�z0

2z0
	 . �5�

The electrostatic energy is thus

E = A
0

�

qn�z0���z0�dz0,

where A is the cross section area on the x-y plane. Therefore,
the electrostatic free energy density was computed by apply-
ing the Debye charging process, in which all the particles are
simultaneously charged from zero to their full charge, as

Fel = 2
0

1

E�	q�
d	

	
.

The surface energy is the difference of total free energies
after adding the interface: 
=limA→��1/A��F−Fbulk� where
F includes Fel as well as the entropic contribution. For small
concentrations the result, based on the linearized PB equa-
tion used by OS, reduced to the OS limiting law. By includ-
ing the ionic size effect near the interface, the agreement
between Levin’s theory and experiments is good for higher
salt concentrations.

However, it is obvious that these calculations, using the
electrostatic potential in a homogeneous electrolyte to obtain
the inhomogeneous density profile, are not self-consistent.
Furthermore, the density inhomogeneity also contributes to
the local free energy density. In the next subsection, we use a
modified linear PB equation for an inhomogeneous electro-
lyte to compute the free energy density, then compare the
resulting surface tension with previous theories and experi-
ments.

B. Total free energy density

We start from the DH equation for an inhomogeneous
electrolyte—i.e., Eq. �2� with � a function of r :��r�. If we
denote �0 as the solution of Eq. �2� with a constant �, it is
just the first term of Eq. �3�. We write � to be the sum of �0,
with �=�0���z0�, and the inhomogeneous correction �1.
Substituting �=�0+�1 into Eq. �2�, we assume n�z� to be
slow varying and expand n�z� at n�z0� with the Taylor series
�note that �2=2�nq2 /��. Keeping only the terms up to n�
leads to �with the prime denoting the derivative in z�

�2�1 − �0
2�1 = �2�0�0��z − z0� +

1

2
�0

2��z − z0�2��0

� −
q

�
G�0,

where �0�����z0� and �0
2����2�z��z0

� . Since �0 satisfies Eq.
�2� with �=�0, we know that �0 is the Green’s function for
�2−�0

2 and �1 can be obtained as
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�1�r,z0� = �0�r,r��G�0�r�,z0�dr�. �6�

To calculate the electric potential � felt by the fixed ion, we
integrate over all charges, excluding the fixed ion. Since
these charge distributions are −�2�, from Eq. �2� we have

��r,z0� = − ��2��r�,z0� − q��r� − z0ẑ�
4���r − r��

dr� + �2

= − �0
2�0�r�,z0�

4��r − r��
dr� + �1 + �2. �7�

Here �2 is the contribution from the images �as the second
term in the last line of Eq. �5��. In the second line we
have substituted � with �0+�1 and use �2�0−�0

2�0
= �−q /����r−r��. We are interested in the potential ��z0 ,z0�
felt by the ion fixed at z0ẑ. Note that the system boundary
affects the integration domain in Eq. �7�. So for a semi-
infinite electrolyte, where all ions are restricted to z�0, the
first term in Eq. �7� becomes

���z0,z0� =
− q�0

2

16�2�


z�0

e−�0�r�−z0ẑ�

�r� − z0ẑ�2
dr�. �8�

Unfortunately we cannot calculate the integration analyti-
cally. Instead the numerical result is shown as the thick line
in Fig. 1. To continue further in our analysis we approximate
it with the function �−q�0 /4����1−e−2�0z0 /2� which is
drawn as the thin line in the figure.

The second term in Eq. �7� is obtained as �16�

�1�z0,z0� =
q�0

2�

96���0
3 . �9�

The potential felt by the test charge is thus

��z0,z0� �
− q�0

4��
�1 −

e−2�0z0

2
	 +

q�0
2�

96���0
3 +

q

4��

e−2�0z0

2z0
,

�10�

where the last term is �2, for which we use the result in Eq.
�5�. Now we are able to calculate Fel by using the Debye
charging process:

Fel =
A

12��


0

� �− �0
3�1 − g��0z0� − h��0z0�� +

�0
2�

8�0
	dz0,

�11�

where g�u���3/8u3��1−e−2u�1+2u+2u2�� and h�u�
��3/8u3��1−e−2u�1+2u��. Added with the entropic contri-
bution of the ideal gas, the total free energy becomes

F =
A

12��


−�

� �− �3�1 − g��z� − h��z��

+
�2�

8�
+ 3lB

−1�2 ln �2	dz . �12�

Here we have dropped the subscript of z0 and �=��z�. The
term −�3 is the well-known electrostatic free energy density
for a homogeneous electrolyte. We may note that g��z�
comes from the system boundary. At the boundary z→0,
�1−g��z��→ 1

2 , giving half of the bulk free energy density.
At z→�, g��z�→0, indicating a vanishing effect away from
the interface. This extra term should yield a lower electrolyte
density near the interface, due to the restricted amount of
charges surrounding each ion. h��z� is the image charge con-
tribution. Near the interface h��z→0�→�, reflecting the in-
finite repulsion given by the image charges. The second term
�2� /8� comes from the nonuniform electrolyte distribution,
which is proportional to n�. There are no terms linear to n�,
since both n� and −n� would give the same contribution.
Considering this differential term, it is easy to show that a
nonuniform density n�z�=n0+b cos kz �with n0, b, and k con-
stants� always yields a higher Fel than n�z�=n0. The differ-
ential term thus plays a role to retard local inhomogeneity.

The free energy in Eq. �12� is derived for an 1:1 electro-
lyte. It is straightforward to extend the derivation for the
cases of multivalences. For an electrolyte in which positive
ions have +Z+q charges and negative ions have −Z−q
charges, the free energy is obtained as Eq. �12� with the
parameter lB replaced by Z+Z−lB.

C. Density profile and surface tension

We compute numerically the density profile which mini-
mizes the total free energy. For comparison first we use only
the bulk, image charge, and entropic terms �Eq. �12� without
the g��z� and �2� /8� terms�. The density profiles as shown
in Fig. 2 �solid lines� are found to be consistent with those of
OS �dot-dashed lines�. As shown in the figure, the agreement
between the solid and dot-dashed lines is fairly good, with
0.03M showing a better match than 0.99M.

With the full F in Eq. �12�, the density profiles are plotted
in Fig. 2 as the dashed curves. The electrolyte densities near
the interface are significantly less. At low concentrations, the
depletion zone from full F is about 3 times larger than that
for just considering the bulk, image, and entropic terms. One
sees that the electrolyte inhomogeneity ��2� /8� term� and
boundary �g��z� term� effects are significant for the deple-
tion of the ions, besides the repulsion between the ions and
polarized interface.

FIG. 1. Numerical results of Eq. �8� �thick line� and the approxi-
mating function of the first term of Eq. �10� �thin line�.
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Here we can check the approximation of keeping only the
terms up to n��z�. From the resulted density profile, the terms
with higher-order derivatives are computed and their values
are indeed negligible, indicating the validity of this approxi-
mation.

Similar results apply to the surface energy. The resulting
surface tension from Eq. �12� is plotted in Fig. 3 as the solid
line. It is almost twice larger than Levin’s result �dotted line�

at low electrolyte concentrations. This is expected from the
larger amount of ions excluded near the interface due to the
contributions from boundary and inhomogeneity as seen in
Fig. 2.

However, to compare with experiments we also want to
consider the effect of the finite ionic size d. The boundary
condition for n�z� would change with d. When d=0,
n�z=0�=0 due to the infinite interaction between the ion and
its image. With d�0, n�z�=0 for 0�z�d but a finite value
of n is allowed at z=d. With a finite value allowed at z=d,
the size of depletion zone is found to decrease, leading to a
smaller free energy difference and surface tension.

The calculation of NaCl �d�0.21 nm� is shown in Fig. 3
as the dashed line. At low concentrations, the results �dashed
line� match well to the experiment �squares� �17�, but it is
too low at high concentrations.

We believe that the comparisons at high electrolyte con-
centrations are not reliable. Several factors contribute to the
error of prediction. All calculations are based on the DH
theory, but it is well known that the DH theory fails in many
situations with high electrolyte concentrations. For the sur-
face tension, other factors are argued to dominate at high
concentrations. �The correction due to the hydration radius of
NaCl gives a remarkably good agreement with experiments
in high concentrations in Levin’s theory �15�; maybe we can
only wait for more experimental data using different ions to
know its validity.� For example, the dispersion force was
proposed to be always larger than the image force for salt
concentrations larger than 0.1M �18�, suggesting that the
electrostatic contribution cannot account for all the surface
tension increases in experiments. The arguments also suggest
that the dispersion forces may be important at low concen-
trations depending on ion specificity. Also the ionic size and
hydration around the ions, which are short-range interac-
tions, would play important roles to ionic distributions for
concentrated electrolytes �19�.

III. APPLICATION TO OTHER CASES

A. Depletion near a water-water interface

The presence of the boundary and inhomogeneity terms
(g��z� and �2� /8� term in the free energy density �Eq. �12��)
implies that the depletion of electrolytes still occurs even
without dielectric discontinuity—e.g., a semi-infinite electro-
lyte with a water-water interface. We compute the total free
energy density, dropping the contribution of the images
�h��z�� from Eq. �12�. The computed electrolyte density
profile for an 1:1 electrolyte with an averaged density
C0=0.03M is plotted as the solid line in Fig. 4. As expected
the interfacial electrolyte density Cb is smaller than C0 with a
depletion zone on the scale of the Debye length. The result
for a 2:2 electrolyte �dashed line� is also shown in Fig. 4
where Fel becomes more important than Fentropic. The inter-
facial density �dashed line in Fig. 4� is lower than that for the
1:1 electrolyte.

In Fig. 5 the ratios Cb /C0 are shown for the 1:1, 1:2, and
2:2 electrolytes. The ratio decreases as the C0 increases, in-
dicating that the boundary effect is more important at high

FIG. 2. The 1:1 electrolyte density profile versus distance from
an air-electrolyte interface at �a� 0.03M and �b� 0.99M. The dashed
curve is obtained using Eq. �12�. The solid curve shows the result
using only the bulk, image, and entropic terms in Eq. �12�. The
dot-dashed curve is the result of the Onsager-Samaras theory.

FIG. 3. The surface tension of an 1:1 electrolyte at room tem-
perature versus the electrolyte concentration. The solid and dashed
curves are the results of our calculations for d=0 and d=0.21 nm,
respectively. Levin’s predictions are shown as the dotted �d=0� and
dot-dashed �d=0.21 nm� curves. The squares denote the experimen-
tal results �17� for NaCl.

S.-S. YEH AND P. CHEN PHYSICAL REVIEW E 72, 036119 �2005�

036119-4



concentrations. As the 1:1 electrolyte shows a modest de-
crease of Cb /C0 on C0, for both 1:2 and 2:2 electrolytes the
ratios drop very quickly with C0. At concentrations larger
than those shown in the figure for the 1:2 and 2:2 electro-
lytes, the density profiles fluctuate in our calculation. This
indicates phase separation and criticality which in electro-
lytes have been studied experimentally �20,21� and theoreti-
cally �22�. To treat the phase separation, the DH theory
should be extended, such as by considering dipolar pairs in
equilibrium with the free ions, adding dipolar ionic solvation
free energy, or including hard-core repulsions �22�. For an
aqueous 1:1 electrolyte, the critical points are found at tem-
peratures much lower than room temperature �20�.

B. Two neighboring electrolyte solutions

Similar depletion behavior also happens when two elec-
trolytes with different average densities are separated by an
interface. Consider two electrolyte solutions separated at
z=0. This could happen for the two electrolytes either �1�
having two immiscible solvents or �2� being separated by a
thin membrane. In the first case ion transfer across such an
interface has been extensively studies in recent years. The
structure and potential distribution inside the interface are

important factors, and different models have been proposed,
along with experimental measurements �23,24�. For the sec-
ond case the common situations where lipid/surfactant bilay-
ers separating two aqueous regions in either biological or
laboratory setups are obvious examples.

The corrections to the mean-field free energy due to the
boundary and inhomogeneity can now be used to compute
the densities in these two electrolytes. Knowledge of these
densities near the boundary is important—e.g., in determin-
ing the rate of ion transfer across the immiscible interface or
the membrane.

For a test charge located at z0ẑ �assuming z0�0�, besides
the mean potential contributed from the ions in the electro-
lyte at z�0, the ions at z�0 would also contribute a mean
potential ��. A similar approximation as used in the first
term of Eq. �10� yields

�� �
− q��− z0�

4��

e−2��−z0�z0

2
,

and the total electrostatic free energy per unit area for two
electrolytes with the same dielectric constant is obtained as

Fel =
1

12��


−�

� �− �3�1 − g„��z��z�…

+ g„��− z��z�…� +
�2�

8�
�dz . �13�

Assume two electrolytes having concentrations C1 and
C2. Since the ions in one electrolyte are contributing to the
electrostatic free energy for ions on the other side of the
interface, assuming C1�C2, we could then expect that
C1�C1b�C2b�C2. For C1=0.13M and C2=0.03M the den-
sity profiles are shown in Fig. 6, which do show the expected
behavior. We are interested in the interfacial concentration
difference Cb. The ratio between Cb and the bulk concen-
tration difference C, with C2=0.03M, 0.09M, and 0.15M
for the 1:1 electrolyte and C2=0.03M for the 1:2 electrolyte,
are shown in Fig. 7. They are decreasing with increasing of
C. The ratio is lower at fixed C with higher C2 due to the
larger electrostatic free energy contribution at higher average

FIG. 4. The electrolyte density profiles with a water-electrolyte
interface. For 1:1 and 2:2 electrolytes, the profiles are shown as the
solid and dashed lines respectively.

FIG. 5. The ratios between interfacial and bulk electrolyte den-
sities, Cb /C0, at different C0 for electrolytes with a water-
electrolyte interface. Three curves are shown for the 1:1, 1:2, and
2:2 electrolytes.

FIG. 6. The density profiles of two neighboring electrolytes ver-
sus distance from their interface. The bulk densities are
C1=0.13M and C2=0.03M.
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concentrations. We also see that the decreasing of the ratio
on increasing C for the 1:2 electrolyte is very fast.

It is also very interesting to see that at the limit of
C→0, the ratio Cb /C tends to a value depending on C2.
For example, at C2=0.03M for the 1:2 electrolyte, the inter-
facial density difference is always less than three-quarters of
the bulk values.

C. Attraction between two neutral macrospheres in
electrolytes

A pair of charged colloidal spheres in electrolytes are pre-
dicted to experience an effective repulsion at large separa-
tions by the Derjaguin-Landau-Verwey-Overbeek theory
�25�. Recent experiments demonstrated unexpected long-
range attractions between like-charged particles under some
circumstances. For example, a surprisingly strong attraction
was measured in metastable colloidal crystallines �26�. At-
tractions have been measured for pairs of spheres confined
by one or two charged planar walls �27�. Several mecha-
nisms have been proposed, such as the charge fluctuations of
colloids and counterions �28�, strong counterion correlations
�29�, nonequilibrium hydrodynamics �30�, and the over-
charging effect of macroions with excess counterions �31�.
Computer simulations show that the imbalanced pressure
caused by the depletion zone of counterions between macro-
ions also leads to an effective attraction �32�.

In this section we discuss the fact that the depletion of
electrolytes around uncharged colloids contributes an attrac-
tion between two touching colloids. Since the depletion zone
width is at the order of the Debye length �, it is also the
effective range of such attraction.

Consider two neutral macrospheres in an 1:1 electrolyte
solution. The dielectric constants of the spheres are assumed
to be 1. From Fig. 8, two nearly touching spheres would
have less total depleted electrolytes than two well-separated
ones, with the difference of the depletion zone being ap-
proximately the shaded region. For the radius R of the
spheres with R��, we approximate the electrolyte distribu-
tion as that near the flat air-water interface. Recall our results

in Sec. II where the free energy per unit area needed to create
a depletion zone with width at order of � is obtained as the
surface tension 
. As the resulting 
 has been shown as the
dashed line in Fig. 3, the decreasing of free energy by touch-
ing two spheres can quickly be estimated as the product of

 /� and the volume of the shaded region in Fig. 8, which is
calculated to be �2�R�2. For concentrations below 0.01M
the results are shown in Fig. 9.

The free energy difference �dashed line� increases with
the electrolyte concentrations. The active range of the inter-
action is at the order of �, which is also plotted in Fig. 9. For
larger concentrations, the range being very small, additional
potentials experienced by the ions—e.g., the dispersion
interaction—would be more important than the electrostatic
interaction �18�. There are also other interactions between
spheres, such as the van der Waal attraction and the interac-
tion between polarized surfaces. The depletion interaction
may only contribute a weak attraction at dilute electrolyte
concentrations. When � approaches R, the approximation of
an infinite planar interface probably overestimates the deple-
tion.

IV. CONCLUSION

In conclusion we have derived the free energy density of
inhomogeneous electrolytes based on the Debye-Hückel

FIG. 7. The ratios between interfacial electrolyte density differ-
ence and bulk electrolyte density difference, Cb /C, at different
C. For the 1:1 electrolytes, the solid line is for C2=0.03M, the
dashed line for 0.09M, and the dot-dashed line for 0.15M. For the
1:2 electrolyte, C2=0.03M.

FIG. 8. Two touching macrospheres: The dashed circles repre-
sent the depletion zone of electrolytes from the sphere surfaces
�solid circles�.

FIG. 9. The free energy difference �dashed curve� caused by the
effective depletion zone and the Debye length �solid curve� at dif-
ferent electrolyte concentrations, for two neutral macrospheres with
R=0.3 �m.
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theory. A differential term to the free energy density is ob-
tained under the assumption of a slow-varying electrolyte
density. This term would retard the local inhomogeneity.
Near the boundary the free energy density is also modified
and it is found to repel ions from the boundary. Applying
these results to an electrolyte with an air-water interface, the
differential and boundary terms dominate the image charge
term and cause a larger electrolyte depletion zone nearby the
interface than previous theories. Including the consideration
of the finite ionic sizes, the predicted surface tension agrees
with experimental results at low concentrations. The density
profiles of two electrolytes separated by an interface are also
considered. The ratio between the interfacial density differ-

ence and the bulk difference decreases as the bulk difference
increases. This would be important to the question of ion
transfer across the interface. Finally, we show that the elec-
trolyte depletion produces an attraction ��18 kBT at electro-
lyte concentrations �0.001M for macroions with 0.3 �m ra-
dii� in typical experiment conditions between two neutral
spheres when their separation is at the order of the Debye
length.
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